Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APPEND(l1_2, l2_1) → MATCH_0(l1_2, l2_1, l1_2)
MATCH_4(l_5, Cons(a, l')) → MATCH_5(a, l', l_5, part(a, l'))
MATCH_5(a, l', l_5, Pair(l1, l2)) → APPEND(quick(l1), Cons(a, quick(l2)))
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l2)
MATCH_1(a_4, l_3, Cons(x, l')) → MATCH_2(x, l', a_4, l_3, part(a_4, l'))
MATCH_4(l_5, Cons(a, l')) → PART(a, l')
MATCH_2(x, l', a_4, l_3, Pair(l1, l2)) → MATCH_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
QUICK(l_5) → MATCH_4(l_5, l_5)
MATCH_2(x, l', a_4, l_3, Pair(l1, l2)) → TEST(a_4, x)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l1)
MATCH_0(l1_2, l2_1, Cons(x, l)) → APPEND(l, l2_1)
MATCH_1(a_4, l_3, Cons(x, l')) → PART(a_4, l')
PART(a_4, l_3) → MATCH_1(a_4, l_3, l_3)

The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1_2, l2_1) → MATCH_0(l1_2, l2_1, l1_2)
MATCH_4(l_5, Cons(a, l')) → MATCH_5(a, l', l_5, part(a, l'))
MATCH_5(a, l', l_5, Pair(l1, l2)) → APPEND(quick(l1), Cons(a, quick(l2)))
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l2)
MATCH_1(a_4, l_3, Cons(x, l')) → MATCH_2(x, l', a_4, l_3, part(a_4, l'))
MATCH_4(l_5, Cons(a, l')) → PART(a, l')
MATCH_2(x, l', a_4, l_3, Pair(l1, l2)) → MATCH_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
QUICK(l_5) → MATCH_4(l_5, l_5)
MATCH_2(x, l', a_4, l_3, Pair(l1, l2)) → TEST(a_4, x)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l1)
MATCH_0(l1_2, l2_1, Cons(x, l)) → APPEND(l, l2_1)
MATCH_1(a_4, l_3, Cons(x, l')) → PART(a_4, l')
PART(a_4, l_3) → MATCH_1(a_4, l_3, l_3)

The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MATCH_1(a_4, l_3, Cons(x, l')) → PART(a_4, l')
PART(a_4, l_3) → MATCH_1(a_4, l_3, l_3)

The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APPEND(l1_2, l2_1) → MATCH_0(l1_2, l2_1, l1_2)
MATCH_0(l1_2, l2_1, Cons(x, l)) → APPEND(l, l2_1)

The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUICK(l_5) → MATCH_4(l_5, l_5)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l1)
MATCH_4(l_5, Cons(a, l')) → MATCH_5(a, l', l_5, part(a, l'))
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l2)

The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MATCH_4(l_5, Cons(a, l')) → MATCH_5(a, l', l_5, part(a, l'))
The remaining pairs can at least be oriented weakly.

QUICK(l_5) → MATCH_4(l_5, l_5)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l1)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l2)
Used ordering: Polynomial interpretation [25]:

POL(Cons(x1, x2)) = 1 + x2   
POL(False) = 0   
POL(MATCH_4(x1, x2)) = x2   
POL(MATCH_5(x1, x2, x3, x4)) = x4   
POL(Nil) = 0   
POL(Pair(x1, x2)) = x1 + x2   
POL(QUICK(x1)) = x1   
POL(True) = 0   
POL(match_1(x1, x2, x3)) = x3   
POL(match_2(x1, x2, x3, x4, x5)) = 1 + x5   
POL(match_3(x1, x2, x3, x4, x5, x6, x7)) = 1 + x1 + x2   
POL(part(x1, x2)) = x2   
POL(test(x1, x2)) = 0   

The following usable rules [17] were oriented:

match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

QUICK(l_5) → MATCH_4(l_5, l_5)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l1)
MATCH_5(a, l', l_5, Pair(l1, l2)) → QUICK(l2)

The TRS R consists of the following rules:

test(x_0, y) → True
test(x_0, y) → False
append(l1_2, l2_1) → match_0(l1_2, l2_1, l1_2)
match_0(l1_2, l2_1, Nil) → l2_1
match_0(l1_2, l2_1, Cons(x, l)) → Cons(x, append(l, l2_1))
part(a_4, l_3) → match_1(a_4, l_3, l_3)
match_1(a_4, l_3, Nil) → Pair(Nil, Nil)
match_1(a_4, l_3, Cons(x, l')) → match_2(x, l', a_4, l_3, part(a_4, l'))
match_2(x, l', a_4, l_3, Pair(l1, l2)) → match_3(l1, l2, x, l', a_4, l_3, test(a_4, x))
match_3(l1, l2, x, l', a_4, l_3, False) → Pair(Cons(x, l1), l2)
match_3(l1, l2, x, l', a_4, l_3, True) → Pair(l1, Cons(x, l2))
quick(l_5) → match_4(l_5, l_5)
match_4(l_5, Nil) → Nil
match_4(l_5, Cons(a, l')) → match_5(a, l', l_5, part(a, l'))
match_5(a, l', l_5, Pair(l1, l2)) → append(quick(l1), Cons(a, quick(l2)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.